Developmental mechanisms for suppressing the effects of delayed release at the endbulb of Held.
نویسندگان
چکیده
Delayed release of neurotransmitter, also called asynchronous release, is commonly observed at synapses, yet its influence on transmission of spike information is unknown. We examined this issue at endbulb of Held synapses, which are formed by auditory nerve fibers onto bushy cells in the cochlear nucleus. Endbulbs from CBA/CaJ mice aged P6-P49 showed prominent delayed release when driven at physiologically relevant rates. In bushy cells from mice before the onset of hearing (P6-P12), spikes were driven by delayed release up to 100 ms after presynaptic activity. However, no such spikes were observed in bushy cells from mice after the onset of hearing (>P14). Dynamic-clamp experiments indicated that delayed release can drive spikes in older bushy cells provided synchronous release is absent, suggesting that activity normally suppresses these spikes. Application of apamin or alpha-dendrotoxin revealed late spikes in older bushy cells, suggesting that postsynaptic activation of K(V)1.x and SK channels during spiking suppresses the subsequent effects of delayed release. The developmental upregulation of these potassium channels would be highly adaptive for temporally precise auditory processing. Furthermore, delayed release appeared to influence synchronous neurotransmitter release. Enhancement of delayed release using strontium was correlated with lower firing probability in current clamp and smaller synchronous EPSCs in voltage clamp. EGTA-AM had the opposite effects. These effects were consistent with delayed and synchronous release competing for a single vesicle pool. Thus delayed release apparently has negative presynaptic and postsynaptic consequences at the endbulb, which are partly mitigated by postsynaptic potassium channel expression.
منابع مشابه
Presynaptic plasticity at two giant auditory synapses in normal and deaf mice.
Large calyceal synapses are often regarded as simple relay points, built for high-fidelity and high-frequency synaptic transmission and a minimal requirement for synaptic plasticity, but this view is oversimplified. Calyceal synapses can exhibit surprising activity-dependent developmental plasticity. Here we compare basal synaptic transmission and activity-dependent plasticity at two stereotypi...
متن کاملOral tolerance for delayed type hypersensitivity contribution of local and peripheral mechanisms
Oral tolerance is a physiological immune mechanism, which controls the outcome of deleterious hypersensitivity reactions to environmental antigens absorbed through the gastrointestinal tract, and maintains homeostasis. Using a mouse model of oral tolerance of delayed type hypersensitivity to contact allergens, i.e. haptens, we have examined the mechanisms involved in the induction of oral toler...
متن کاملRelative roles of different mechanisms of depression at the mouse endbulb of Held.
Several mechanisms can underlie short-term synaptic depression, including vesicle depletion, receptor desensitization, and changes in presynaptic release probability. To determine which mechanisms affect depression under physiological conditions, we studied the synapse formed by auditory nerve fibers onto bushy cells in the anteroventral cochlear nucleus (the "endbulb of Held") using voltage-cl...
متن کاملA Novel Presynaptic Inhibitory Mechanism Underlies Paired Pulse Depression at a Fast Central Synapse
Several distinct mechanisms may cause synaptic depression, a common form of short-term synaptic plasticity. These include postsynaptic receptor desensitization, presynaptic depletion of releasable vesicles, or other presynaptic mechanisms depressing vesicle release. At the endbulb of Held, a fast central calyceal synapse in the auditory pathway, cyclothiazide (CTZ) abolished marked paired pulse...
متن کاملNon-cholinergic effects of paraoxon on [3h]-GABA release from rat cerebellar giant synaptosomes
Diethyl p-nitrophenyl phosphate (paraoxon) is the active toxic metabolite of parathion. Some evidences indicate that OPs affect the GABA system via noncholinergic mechanisms. The purpose of this study was to investigate the effects of paraoxon on K+-evoked [3H]-GABA release from cerebellar synaptosomes. Adult male rats (200 ± 30 g; 3-4 months old) were sacrificed by decapitation and the cerebel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 34 شماره
صفحات -
تاریخ انتشار 2010